It was suggested [1] that having natural frequency of the front approximately 80 % of that of the rear suspension in a vehicle will result in a flat ride for the passengers. Flat Ride in this case means that the pitch motion of the vehicle, generated by riding over a bump for instance will fade in to the bounce motion of the vehicle much faster. Bounce motion of the vehicle in mush easier to tolerate and feels more comfortable for the passengers. In a previous study the authors, analytically proved that this situation is not practical. In other words, for any vehicle there will only be one certain velocity, depending on the geometry and suspension system specifications which the flat ride will happen at. The search continued to find a practical method for enjoying the flat ride in vehicles. Solving the equation of motion of the vehicle for different spring rates and road configuration the authors came up with design chart for smart suspension systems. Using the advantages of the analytical approach to the flat ride problem, the chart was established to be used for vehicles with smart active suspension systems. In this paper the mathematical methods used and the resulted criteria for designing a flat ride suspension system which will perform in different speeds is presented.
↧