Design solution of a novel mobile robot navigation system, presented here, is used to control robot's locomotion across slippery surfaces. Usually, motion control strategies, are based on assumption of sufficient traction between tyres and the road. Motion across slippery surfaces can endanger the robot and its surroundings. Our solution combines Light Detection and Ranging (LIDAR) measurements with odometry data. It performs well on any surface, regardless of sensing, localization and navigation errors, within an indoor environment, in real-time. An accelerated feature detection method is used to improve LIDAR localization update rate and improve localization accuracy. Experiments conducted validate proposed approach.
↧