Near-field light concentration from plasmonic nanostructures was predicted to significantly improve solar cell conversion efficiency since the inception of plasmonic solar cells. However the challenge remains in designing effective nanostructures for useful near-field enhancement much exceeding the detrimental ohmic loss and light blockage losses in solar cells. We propose and demonstrate ultra-small (a few nanometers) gold nanoparticles integrated in amorphous silicon solar cells between the front electrode and the photoactive layer. Significant enhancements in both the photocurrent (14.1%) and fill factor (12.3%) have been achieved due to the strong plasmonic near-field concentration and the reduced contact resistance, respectively.
↧