Quantcast
Channel: Browse By Latest Additions - RMIT Research Repository
Viewing all articles
Browse latest Browse all 41248

Capturing the signature of severe weather events in Australia using GPS measurements

$
0
0
Rapid developments in satellite positioning, navigation, and timing have revolutionized surveying and mapping practice and significantly influenced the way people live and society operates. The advent of new generation global navigation satellite systems (GNSS) has heralded an exciting future for not only the GNSS community, but also many other areas that are critical to our society at large. With the rapid advances in space-based technologies and new dedicated space missions, the availability of large scale and dense contemporary GNSS networks such as regional continuously operating reference station (CORS) networks and the developments of new algorithms andmethodologies, the ability of using space geodetic techniques to remotely sense the atmosphere (i.e., the troposphere and ionosphere) has dramatically improved. Real time GNSS-derived atmospheric variables with a high spatio-temporal resolution have become an important new source of measurements for meteorology, particularly for extreme weather events since water vapour (WV), as the most abundant element of greenhouse gas and accounting for ∼70% of global warming, is under-sampled in current meteorological and climate observing systems. This study investigates the emerging area of GNSS technology for near real-time monitoring and forecasting of severe weather and climate change research. This includes both ground-based global positioning system (GPS)-derived precipitable water vapour (PWV) estimation and four-dimensional (4-D) tomographic modeling for wet refractivity fields.

Viewing all articles
Browse latest Browse all 41248

Trending Articles