Understanding the complexity of cellular biology often requires capturing and processing an enormous amount of data. In high-content drug screens, each cell is labeled with several different fluorescent markers and frequently thousands to millions of cells need to be analyzed in order to characterize biology's intrinsic variability. In this work, we demonstrate a new microlens-based multispectral microscope designed to meet this throughput-intensive demand. We report multispectral image cubes of up to 1.30 gigapixels in the spatial domain, with up to 13 spectral samples per pixel, for a total image size of 16.8 billion spatial-spectral samples. To our knowledge, this is the largest multispectral microscopy dataset reported in the literature. Our system has highly reconfigurable spectral sampling and bandwidth settings, and we have demonstrated spectral unmixing of up to six fluorescent channels. This technology has the potential to speed up drug discovery by alleviating the imaging bottleneck in image-based assays.
↧