Quantcast
Channel: Browse By Latest Additions - RMIT Research Repository
Viewing all articles
Browse latest Browse all 41248

A comparative analysis of power demand forecasting with artificial intelligence and traditional approach

$
0
0
Power demand forecasting is a significant factor in the planning and economic and secure operation of modern power system. This research work has compared different forecasting techniques and opted to find out better technique in context of power generation, which varies rapidly from time to time. The dataset has been generated from yearly demand of electricity of Bangladesh for last five years. Year, irrigation season, temperature and rainfall amount have been considered as input parameters where as single output is demand of load in adaptive neuro-fuzzy inference system ANFIS. Another artificial intelligence technique, artificial neural network ANN has been used to validate the output results. The best suited traditional technique for forecasting power generation is seasonal forecasting. Seasonal forecasting is also used to compare with ANFIS and ANN to find out better technique. The result of experiment indicates that ANFIS is superior method to tackle forecasting of power generation from different error measures.

Viewing all articles
Browse latest Browse all 41248

Trending Articles